Zimbabwe National Energy Efficiency Audit (NEEA)

Agriculture sector presentation

SAEC (SEMCO, <u>SIRDC</u> and others)

by

Sosten Ziuku (Ph.D) - SIRDC

Objectives of the study

- To conduct an extensive study to determine the state of energy efficiency in Zimbabwe.
- The study looked particularly at seven sectors, i.e. Manufacturing, Mining, Transport, Large Buildings, Commercial Services, Agriculture and Housing.
- Selected entities in each sector were audited and the measure of efficiency was the <u>Energy Intensity</u> associated with the <u>economic</u> or <u>human activity</u>.
- The Intensities derived from the study will form baselines for energy efficiency and other government policies.

NEEA

Methodology of the Audit

- Stakeholder identification and engagement
 - emails, phone calls, face-to face meetings, focus group discussions, stakeholder workshop(s)
- Desktop study
 - Lit. review, what has been done? Where? Why? Results there of!
 - Identification of significant energy users from ZETDC database, international databases e.g. IEA
- Baseline establishment
 - Historical and current usage patterns
 - Establishment of base load from <u>baseline equation</u>
- Identify Key Energy Drivers for Economic Activities
 - Usual "energy drivers "are the economic activities in terms volumes or tones of output, can be hours of operation, or levels occupancy.
- Energy matrix assessment
 - Identifies strength, weaknesses and opportunities in organisations w.r.t., policy, management, motivation, information systems, marketing and investment in EE.

Methodology of the Audit

- Perform detailed Energy Audits
 - thorough process, historical data collection, walkthroughs, loggings at various work stations, discussion with management and responsible individuals, process assessment etc
- ✤ Walk through energy audits
 - Data collection, quick survey, identification of energy use patterns, meetings with responsible individuals
- Identify opportunities for <u>ECM</u> interventions
- Identify barriers to Energy Management
- Policy considerations and recommendations

NEEA COVERAGE

Sector	Target number	Audited entities
Agriculture	3	1 x Large Scale Tobacco Farm (D)
		1 x Large Pig Farm (D)
		1 x Small Scale Poultry Farm (W)
		1 x Large scale poultry (W)
		1 x Large Scale mixed crop estate (D)
		1 x Large scale plantation estate (D)
Commercial Services (Food and catering)	3	1 x Fast Food Outlet (W)
		1 x Internet Cafe (W)
		2 x Large Scale Shopping Mall(D)
		1 x 3 Star Hotel (D)
		1 x Large Health Care Service (D)
Buildings	3	1 x Warehouse (D)
		1 x Auction Floor (D)
		1 x Administration Block (D)
		1 x Boarding School (D)
Urban and Rural Residential/ Domestic	15	103 questionnaires,
		15 detailed audits (D)
Manufacturing	3	1 x Mineral Processor (D)
		1 x Large Chemical Processor (D)
		1 x Wire Manufacturer (D)
		1 x Large FMCG factory (D)
		1 x Drink Manufacturer (D)
		1 x Large Maize Miller (W)
		1 x Large Fertilizer Blender (W)
		1 x Timber Processor (S)
		1 x Gas Processor (D)
		1 x Sugar Processor (D)
		1 x Cement Processor (D)
Mining	3	1 x Nickel Mine (D)
		2 x Gold Mines (D)
		1 x Platinum Mine (D)
Transport	3	1 x Trucking Organisation (D)?
		2 x Long distance buses (D)?

Electricity energy consumption by category

Sector	19 Consumption (GWh)	98 Sector Contribution	20 Consumption (GWh)	13 Sector Contribution	% change in consumpti on
Mining	1,579.10	17%	1,246	15%	-21%
Industrial	3,951.82	42%	2,044	24%	-48%
Commercial	1,734.23	19%	1,631	20%	-6 %
Farming	690.48	7%	491	6%	-29%
Domestic	1,385.00	15%	2,878	35%	108%
Total	9,341	100%	8,290	100%	-11%

<u>Note</u>: Excludes wood, liquid fuels, coal and gas consumption

a) Energy sources used in Agriculture are:

- Electricity to power electrical equipment/machines such as (motors, pumps, welding and general lighting)
- □ Electricity for space heating (piglets, poultry, nurseries); HDD/CDD
- Coal for firing boilers and for tobacco curing
- Diesel and petrol to power vehicles and equipment (Trackers, combine harvesters, front end loaders and the standby generators)
- □ Acetylene for welding
- □ LPG for heating including cooking
- Paraffin for heating; and
- □ Wood for heating (general heating, tobacco curing)
- □ Biogas for cooking and general heating
- □ Water (Municipal, borehole, river, dam) for laundry and ablution and irrigation.

Sector findings (Case study 1 - Tobacco)

Sector findings (Case study 1 - Tobacco)

Source Tobacco Research Board (TRB)			
Barn Type	Fuel Source	Ratio	
Conventional	Wood	4kg : 1kg	
Rocket barn	Wood	2.5kg : 1kg	
Modro Electric barn	Electric	To be confirmed	
Tunnel barn	Coal	1kg : 1kg	

International benchmarks for a number of barns

Barn Type	Zimbabwean	South Africa	India	Zimbabwean
	Farm	(British American Tobacco South	(Nayak, 2013)	Alternative (MUSONI,
		Africa, 2013)		2013)
Conventional	4kg : 1kg		8kg:1kg	2.06kg:1
Rocket barn	2.5kg : 1kg			2.06kg:1
Tunnel barn	1kg : 1kg	1.2kg: 1kg		

Sector findings (Case study 1 - Tobacco)

a) Water leakages

a) lagging of steam pipes

Unnecessary day lighting in warehouse_0

Sector findings (Case study 2 – Pig production)

Sector findings (Case study 2 – Pig production)

Energy intensity baseline

Year	2013	2012	Unit
Total Energy Consumption	1 618 390	1 494 279	MJ
	449 553.0	415 077	MWh
Total number of pigs raised	29 736	27 244	
Energy Intensity	54.4	54.85	MJ/Pig

Energy intensity benchmarking

Country	Zimbabwe	South Africa SAPPO	Ireland	France
MJ/pig	54.4	30	97.2	61.2
kWh/pig	15.1	8.33	27	17

There's opportunity to improve the energy intensity to the levels of SA

Sector findings (Case study 2 – Pig production)

- a) Tea plantation and production since 1920s
- b) Coffee plantations and production
- c) Macadamia plantations and processing
- d) Avocado plantations
- e) Banana plantations

Sector findings (Case study 3 – Large Scale Estate)

Significant energy usage at large scale estates

- Water pumping from dams to elevated earth dams
- water pumping direct for irrigation
- Electricity use in tea, coffee and macadamia processing factories
- Diesel for GenSets used during power outages
- Wood for boilers that generate steam for industrial process heat
 Coal for boilers
- •Electricity use in farm compounds

Measured and ideal Power Factors at a poultry processing farm

Sector findings (Case study 4 – Large poultry farm)

□ 39 foul runs. Total capacity of 220 000 birds

The significant energy users on the estate are:

- •2 160 x 100 W incandescent Philips lights bulbs.
- •8 x 240W HPSV perimeter fencing lights.
- •4 x 2.5 kW borehole pumps.
- •78 x 3.5 kW stoker fan motors used for heating and ventilation.
- •78 x 2.5 kW blower fans used to light the coal heater.
- •2 x 2 kW Thermotec Geysers.
- 2 x 107 kW Desktop Computers among others

Energy intensity comparison

Parameter	Entity Intensity	Astral Poultry RSA 2013 Annual Report
Intensity kWh/bird	1.632	1.376

Sector findings (Case study 4 – Large poultry farm)

➤Good correlation between energy consumption and poultry production

ZERA NEEA- 1st Stakeholder workshop 24 Feb 2014

Sector findings (Case study 4 – Large poultry farm)

Potential savings from indoor <u>lighting retrofit with LEDs</u>

General Sector findings (Issues and Causes)

- ☐ High energy intensities even in organisations with suppressed output
- Poor data records
 - ➢ production figures and farm output are kept in different depts
 - ➢ lack of sub-metering: energy data for subsectors not available
 - ➤ wood usage data is unavailable. Had to rely on estimates
 - ➢Diesel and petrol data for various sectors (water pumping, generators and vehicles is inseparable)
- Oversized and undersized water pumps
- □ Excessive water leakages in irrigation piping systems
- Direct On-line starting of electric motors
- □ Air leakages in compressed air systems
- □ Steam leakages in boiler rooms
- □ Inefficient lighting systems e.g. incandescent light bulbs, Na vapour lamps, lights ON during daylight etc
- □ Lack of EM policies and strategies

The ECMs for Agriculture / What can be done

i) Water pumping systems

- Mending leaks on water pumps (gland packing)
- Mending leaks on water pipes
- Replace oversized pumps with optimally sized pumps
- Trimming impellers of oversized pumps and
- Install VSDs and soft starters on large pump motors.

ii) Compressed air system

- Mending leaks in pipes.
- Blanking

The ECMs for Agriculture are:

iii) Refrigeration

- Retrofitting Fibre Reinforced Plastic (FRP) fan blades
- Improve insulation of pipes
- Calibration and upgrading of temperature controls
- Maintaining specified refrigerant charge and
- Cleaning of heat transfer surfaces of evaporators and condensers.

iv) Others

- Improve lagging of steam pipes for tobacco bans
- Install economisers in boiler exhaust system to preheat water
- Replace/repair missing and damaged insulation
- Mending steam leaks in pipes and
- Install adequate instrumentation for monitoring/controlling boilers.
- Use biogas for heating in place of wood fuel (for small scale farms)

Agriculture sector observations and conclusion

> There are no energy policies at farming institutions

- > There are no energy management strategies in agriculture
- >There's a lack of energy efficiency culture in agriculture institutions
- Information and record keeping on energy use is poor and at worst non-existant
- ➤There are no dedicated personnel responsible for energy management even at national scale
- There is lack of integration between production and energy consumption in the majority of institutions

Energy conservation <u>policies</u> and <u>measures</u> are urgently required in agriculture